China Hot selling New Energy Vehicle Battery Electric Controller Housing Aluminum Die Casting Parts Made in China High Quality drive shaft assembly parts

Product Description

Products
YOUR DESIGN WE HELP TO ACHIEVE, AS YOUR SINCERE PARTNER!
                 
              SINCERITY                QUALITY                COMPETENCE

General Products Application /Service Area: 
Metal parts for vehicle, agriculture machine, construction machine, transportation equipment, Valve and Pump system. E.g. Engine bracket, truck chassis bracket, gear box , gear housing , gear cover, shaft, spline shaft , pulley, flange, connection pipe, pipe, hydraulic valve, valve housing ,Fitting , flange, wheel, flywheel, oil pump housing, starter housing, coolant pump housing, transmission shaft , transmission gear, sprocket, chains etc.

Application
• Agricultural equipment • Armament • Automobile industry • Computing equipment • Medical / dental instruments • Measuring instruments
•Miscellaneous equipment •Pharmaceutical industry • Orthopedic implants • Safety equipment • Petrochemical industry • Industrial valves
•Fixing and movable equipment • Sanitary fittings • General machinery • Pumps and general connections • Food and beverage processing • Instrumentation equipment
Product Name Custom Powder Coating CNC Machining Lifting Support Machinery Parts Aluminum Die Casting
Main blank Process for Aluminum Casting Die Casting, Permanent Molding /Gravity Casting, Low Pressure Casting,
High Pressure Casting/Sand Casting, Extrusion Casting etc.
Blanks Tolerance -Casting  Tolerance CT4-6 for Permanent Molding, Die Casting.
Applicable Material for casting 356.0/ZL101,GAlSi7Mg  (3.2371.61)/AlSi7Mg/, A-S7G, Al Si Alloy,  Al Cu Alloy ZL201 Al Mg Alloy ZL301,ZL302, 
Al Zn Alloy ZL401Zn Alloy Zamak 3, Zamak 5, Zamak 7, Zamak 2
Or according to customer requirements
Casting Blank Size  /Dimensions 2 mm-1500mm / 0.08inch-60inch , or according to customer requirements
Casting Blank Weight Range from 0.01kg-50kg
Applicable Machining Process CNC Machining/ Lathing/ Milling/ Turning/ Boring/ Drilling/ Tapping/
Broaching/Reaming /Grinding/Honing and  etc.
Machining Tolerance From 0.005mm-0.01mm-0.1mm
Machined Surface Quality Ra 0.8-Ra3.2 according to customer requirement
Applicable Heat Treatment T5~T6
Applicable Finish Surface  Treatment Shot/sand blast, polishing,  Primer Painting , Powder coating, ED- Coating, 
Finish Painting, Anodize (White or Black Color)
MOQ 1000pcs per batch
Lead Time 45 days from the receipt date of deposit for die casting part

Products shown here are made to the requirements of specific customers and are illustrative of the types of manufacturing capabilities available within CZPT group of companies.
Please send us your detailed drawing/ sample/requirements for us offering a reasonable quotation to you and we will trying our best to make the goods in good quality and delivery in time .
MATECH policy is that none of these products will be sold to 3rd parties without written consent of the customers to whom the tooling, design and specifications belong.

Product Application
 

Agricultural equipment Armament Automobile industry Computing equipment
• Medical / dental instruments • Measuring instruments • Miscellaneous equipment • Pharmaceutical industry
• Orthopedic implants • Safety equipment • Petrochemical industry • Industrial valves
•Fixing and movable equipment • Sanitary fittings • General machinery • Pumps and general connections

Manufacturing Process

1, Aluminium die casting is a process of injection aluminum alloy under pressure, which produces parts in high volume at low costs.
2, There are 2 processes of Aluminum die casting: hot chamber and cold chamber.
3, A complete cycle can vary from 1 second for small components to minutes for a casting of large part, making aluminium die casting the fastest technique available for producing precise aluminium alloy parts.
4, Any aluminium alloy die casting parts are customized according to the clients’ drawing or samples.
5, Certification: as customer’s requirements.

Die Casting Process
Die casting is an industrial casting process for manufacturing cast parts of aluminum, zinc, magnesium or brass. The molten metal is pressed under high pressure into the die where it hardens and is then automatically ejected. A die casting diecan contain several cavities. Depending on the die, series ranging from approximately 300 to 400,000 molded parts can be produced due to the high output of the dies. Die casting allows parts to be manufactured with very thin walls and smooth surfaces and edges. Due to the high strength, very good dimensional accuracy and reproducibility, die casting is the optimum casting procedure for complex components and demanding applications, both in terms of quality and economy.
To achieve superior quality, we use CNC machining centers to finish the cast parts. If desired, we will add tailored components to your diecast parts in additional production steps and will assemble these into modules and assemblies.
Die cast components are used in many branches of industry for housings, covers, fittings or mountings. Depending on the
requirements, we supply die cast surfaces for decorative uses, improved corrosion protection or improved wear resistance.
Depending on the alloy and finishing process, die cast parts can be provided with the following surfaces: Sandblasting, glass bead blasting, barrel finishing, brushing, polishing, phosphating, passivating, powder coating, wet painting, eloxating, copper plating, nickel plating, screen printing or pad printing.

Die Casting Equipment

Technical Support:
HangZhou Ketuohong Machinery Equipment., Ltd (KTH) is professional at independent development and design. Our engineers are skilled at AUTO CAD, PRO ENGINEER, UG, SOLID WORKS and other 2D & 3D softwares, and we have CZPT mold flow software to simulate the casting process dueing tooling/die and p’re design. We are able to design, develop, produce and deliver your PO according to your drawings, samples or just an idea. Dural control of standard products and OEM products.

Quality Control: 
1) Checking the raw material after they reach our factory——- Incoming quality control ( IQC) 
2) Checking the details before the production line operated 
3) Have full inspection and routing inspection during mass production—In process quality control(IPQC) 
4) Checking the goods after they are finished—- Final quality control(FQC) 
5) Checking the goods after they are finished—–Outgoing quality control(OQC)
 
Project Plan: 

Our Factory

                               HangZhou Ketuohong Machinery Equipment., Ltd (KTH)

We specialize in Metal Parts Solution for Vehicle, Agriculture machine, Construction Machine, transportation equipment, Valve and Pump system etc. 

With keeping manufacturing process design, quality plHangZhou, key manufacturing processes and final quality control in house we are mastering key competence to supply quality mechanical parts and assembly to our customers for both Chinese and Export Market. 

To satisfy different mechanical and functional requirements from our customers we are making a big range of metal products for our clients on base of different blanks solutions and technologies. These blanks solutions and technologies include processes of Iron Casting, Steel Casting, Stainless Steel Casting, Aluminum Casting and Forging. 

During the early involvement of the customer’s design process we are giving professional input to our customers in terms of proces feasibility, cost reduction and function approach. You are welcome to contact us for technical enquiry and business cooperation.

How do We Work with Our Clients?
 
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;
2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;
3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;
4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.;
5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Why choose us?

1. High skilled and well-trained working team under good management environment.
2. Quick response and support for any inquiries.
3. Over 10 years professional manufacture experience to ensure high quality of your products.
4. Large and strong production capacity to meet your demand.
5. High Quality standard and hygienic environment.
6. We have very strict quality control process:
In coming Quality control (IQC) – All incoming raw material are checked before used.
In process quality control (IPQC) – Perform inspections during the manufacturing process.
Final quality control (FQC) – All finished goods are inspected according to our quality standard for
each products.
Outgoing Quality Control (OQC) – Our QC team will 100% full inspection before it goes out for
shipment.
Proper Quarantine procedure – For those products got rejected to pass the quality control, they will
specially marked and dispose.
7. Good after sales services
8. Passed IATF16949:2016 and provide SGS/RoHS certification if needed.

Our Package
Inner Packing Strong & waterproof plastic big is packed inside, to keep the product in safe condition.Or as customer requests.

Outer Packing Multilayer wooden box with strong bandages, used for standard export package. Or customized as per customer’s requirements.

FAQ

1Q: Are you trading company or manufacturer?
A: We are a factory, so we can provide competitive price and fast delivery for you.

2Q: What kind of service can you provide?
A: Our company can provide custom casting, CNC machining and surface treatment according to customer’s requirements.

3Q: What’s kinds of information you need for a quote?
A: In order to quote for you earlier, please provide us the following information together with your inquiry.
1. Detailed drawings (STEP, CAD, CZPT Works, PROE, DXF and PDF)
2. Material requirement (SUS, SPCC, SECC, SGCC, Copper, AL, ETC.)
3. Surface treatment (powder coating, sand blasting, planting, polishing, oxidization, brushing, etc.)
4. Quantity (per order/ per month/ annual)
5. Any special demands or requirements, such as packing, labels, delivery, etc.

4Q: What shall we do if we do not have drawings?
A: Please send your sample to our factory, then we can copy or provide you better solutions. Please send us pictures or drafts with dimensions (Thickness, Length, Height, Width), CAD or 3D file will be made for you if placed order.

5Q: What makes you different from others?
A: 1. Our Excellent Service
We will submit the quotation in 48 hours if getting detailed information during working days.
2. Our quick manufacturing time
For Normal orders, we will promise to produce within 3 to 4 weeks.
As a factory, we can ensure the delivery time according to the formal contract.

6Q: Is it possible to know how are my products going on without visiting your company?
A: We will offer a detailed production schedule and send weekly reports with photos or videos which show the machining progress.

7Q: Can I have a trial order or samples only for several pieces?
A: As the product is customized and need to be produced, we will charge sample cost, but if the sample is not more expensive, we will refund the sample cost after you placed mass orders.

8Q: Why there is tooling cost?
A: It’s mold cost. Indispensable production process. Only need to pay for first order, and we will bear maintenance cost of mold damage.

9Q: What is your terms of payment?
A: Payment of sample order ≤ 1000USD, 100% T/T full payment.
Payment of tooling or batch order ≥ 5000USD, 70% T/T in advance, balance before shipment.

10Q: What’s your after-sale service?
A: If there is quality problem, please provide photos or test report, we will replace defective goods or return funds.

If you have any other questions please find us online, or send messages via email, WhatsApp for better communication!

 

 

 

 

 

 

 

 

Die Casting Machine Type: Hot Chamber Die Casting Machine
Die Casting Method: Precision Die Casting
Application: Machinery Parts
Machining: CNC Machining/Lathing/Milling/Turning/Boring
Material: Aluminum Alloy, ADC10, ADC12, A380, A356, Alsi10mn
Surface Preparation: Anodize, Painting, Powder Coating, E-Coating
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

splineshaft

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China Hot selling New Energy Vehicle Battery Electric Controller Housing Aluminum Die Casting Parts Made in China High Quality   drive shaft assembly parts	China Hot selling New Energy Vehicle Battery Electric Controller Housing Aluminum Die Casting Parts Made in China High Quality   drive shaft assembly parts
editor by CX 2023-11-13

Recent Posts